FORMATION OF A 1,2 DIHYDRONAPHTHALENE VIA METHYLENE RADICAL ATTACK ON A NAPHTHALENE NUCLEUS

by

J.J. Köhler and W.N. Speckamp^{*}, Laboratory of Organic Chemistry, University of Amsterdam,

Nieuwe Achtergracht 129, Amsterdam, The Netherlands.

(Received in UK 5 January 1977; accepted for publication 13 January 1977)

The unprecedented reactivity of α -methylene radicals generated from α -iodomethylpiperidine arylsulfonamides¹⁾ necessitated a further study on the effect of variations of the aryl substituent. In this communication the results from a number of aromatic and heteroaromatic derivatives are discussed.

1 2 a) $R = 4 - NO_2 Ph$ X=I f) R = 2-thienyl X=H b) R=4-NO₂Ph X=Br g)R=2-naphthyl X=I c) R=3-pyridyl h) R = 1- naphthyl X=I X=I d) R=3-pyridyl X=H i) R= 1- naphthyl X=H e) R=2-thienyl X=I j) R = β-styryl X=I 4 5 7

Reaction of the iodide $\underline{1a}^{2}$ ($C_6H_6/80°C/7$ h) with 2.7 equiv. of tributylstannane (<u>SnH</u>) gave a 56% yield of rearranged product <u>2a</u>. Assuming an effective 1,5 addition process with mesomeric NO₂ stabilization of the intermediate radical, this behaviour could be expected. None of the eventually formed 1,6 addition or 2-methyl reduction products could be detected, the remaining 44% of material being composed of various NO₂ reduction products. Interestingly, a similar reaction with the bromide <u>1b</u> gave the dimeric azo derivative <u>3</u> in 51% yield, in which reduction had taken place of the NO₂ group and the C-Br linkage was unaffected.

636

In contrast to the reported preference for α and γ alkylation in radical reactions with pyridine^{3,4)}, none of the corresponding α or γ insertion product was found upon reaction ($C_6H_6/80^\circ$ C/9 h/2·7 equiv. of <u>SnH</u>) of <u>1c</u>. Products obtained were the reduced compound <u>1d</u> (23%) and rearranged material <u>2c</u> (30%). The latter type of product <u>2e</u> was also formed in 49% yield ($C_6H_6/80^\circ$ C/8 h/2·7 equiv. <u>SnH</u>) upon reaction with <u>1e</u>, together with 35% of <u>1f</u>, while none of the β insertion product was found⁵). Upon raising the temperature (anisole/152°C/3h/2·7 equiv. of <u>SnH</u>) <u>2e</u> was formed in 72% yield in accordance with the trend described earlier¹).

A most remarkable result was noted upon reaction of the naphthyl sulfonamide $\underline{1g} (C_6H_6/80^{\circ}C/5 h/2.7 \text{ equiv. of SnH})$. In addition to 13% of rearranged material $\underline{2g}$ the dihydronaphthalene 1,6 addition product $\underline{4}$ was formed in 81% yield; m.p. 128-132°C, 'H NMR $\delta(CDCl_3)$ 1.1-2.1 m (8H), 2.8-3.2 m (1H), 3.35-3.80 m (3H), 3.90-4.18 m (1H), 6.09 d broadened J = 9.5 cps (1H), 6.6 double d J₁ = 9.5 cps J₂ = 3.0 cps (1H) and 6.95-7.4 (4H). Its structure was confirmed via mass spectral analysis, decoupling experiments and hydrogenation to the tetrahydroderivative $\underline{5}$, m.p. 195-198°C.

This to the best of our knowledge unprecedented course of intramolecular methylene radical addition is rationalized by assuming two intermediates for the addition process which can be visualized as extremes⁶⁾. In the first one <u>8</u> the orbital interaction between the allylic radical centre and the π -system is favourable. The peri interaction, however, hampers the hydrogen abstraction from <u>8</u>, which may lead to an alternative way of termination.

The second possible intermediate in which the thiazine ring adopts a boat conformation is unfavourable because of the absence of allylic radical stabilisation.

Therefore hydrogen transfer of <u>SnH</u> is presumably the preferred process via intermediate <u>8</u> leading to formation of a dihydronaphthalene. Support for this assumption can be derived from the behaviour of the 1-naphthyl derivative <u>1h</u>. In this molecule the intermediate radical cannot be stabilized via allylic interaction and the preferred process is abstraction of a hydrogen atom giving rise to the naphthothiazine <u>6</u> (28%) in addition to the reduced compound <u>11</u> (14%) and the rearranged product <u>2h</u> (28%).

In order to determine the possibilities for attack on non aromatic π -systems the <u>SnH</u> reaction of the E-isomer of <u>1j</u> was investigated. Reaction of <u>1j</u> (C_6H_6 / 80°C/3 h/2·7 equiv. <u>SnH</u>) gave a vield of 18% of <u>2j</u> together with 47% of a solid m.p. 42-45°C which according to ¹³C-NMR analysis was composed of a 1:1 mixture of two epimers of <u>7</u>. So far, attempts to separate the latter isomers have been unsuccessful.

Since the starting C=C geometry of <u>1j</u> proved to be unaltered in the rearrangement product <u>2j</u> a second experiment was also carried out with a 7:4 mixture of Z and E isomers^{7,8)} of <u>1j</u>. After work-up an identical mixture of <u>2j</u> and the two epimers of <u>7</u> were obtained as in the reaction of $E - \underline{1j}$, indicating that the starting C=C geometry is not maintained in the product. The most plausible explanation for this observation is that the initially formed radical has a sufficiently long enough life time to undergo isomerisation to the more stable E-isomer.

Although a fairly well consistent picture of the radical rearrangement of α-iodomethyl piperidine sulfonamides has now been established a number of questions still have to be answered, particularly with respect to the geometry of the transition state. Work on optically active derivatives is therefore currently in progress.

637

REFERENCES AND NOTES

- 1) Preceding communication, Tetrahedron Letters.
- 2a) Since NO₂-aryl derivatives show pronounced effects in radical behaviour^{2b)} <u>1a</u> was chosen as a first representative to detect a possible deviation from the generally observed pathway.
- 2b) G.H. Williams, Homolytic aromatic substitution. The Pergamon Press Ltd., London, 1960.
- 3) E. Hardegger and E. Nikles, <u>Helv.Chim.Acta</u>, <u>40</u>, 2421 (1957).
- 4) R.A. Abramovitch and K. Kenaschuk, Can.J.Chem., 45, 509 (1967).
- C.M. Camaggi, R. Leardini, M. Tiecco and A. Tundo, <u>J.Chem.Soc</u>.(B), 1251 (1969).
- 6) Although not rigorously proven it is supposed that no conformational isomerisation is occurring of the iodomethyl substituent. Therefore, the intermediate 8a in which the thiazine ring has a boat form and radical stabilisation is possible is rejected because of the equatorial methylene position.

- 7) Obtained by irradiating with light of 300 nm a solution of the E-isomer of <u>1j</u> (1 mmol) in 10 ml methanol with 3 ml acetophenone as a photosensitizer.
- A.P. Terentev, R.A. Gracheva and Z.F. Shcherbatova, <u>Dokl.Akad.Nauk.SSSR</u>, Ser.Khim, <u>84</u>, 975 (1952).